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1 Optimal Setting of a Monochromatic Source

Suppose we have an x-ray source that can be set to any desired single energy
and that we want to have maximal sensitivity for detecting a small object
with high density, and x-ray cross-section op. We suppose it is embedded in
a uniform body with cross-section oz. The depths in atoms/unit area are
Ly and Lp and we write

XT:O'TLT; XB :O'BLB. (1)

If N x-rays enter the body in the absence of the small target, the number
that emerge is Ne *B. If the target is present, as well, this is reduced to
Ne X8FTX1 o Ne X8(1 — X;). We assume X < 1.

The change in the signal due to the target is, on average,

AN = Ne *2 X7 (2)
The statistical significance of this is

(AN)? N2 2Xsx2
i e e ] (3)

We wish to maximize this consistent with a fixed exposure of the body
(patient) the x-rays. The exposure is the number of x rays absorbed times
their energy:

Exposure = EN(1 — e *#) (4)
Thus we need to maximize T
_e Xy (5)
E(1 —eXn)
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where, of course, the cross-sections and thus Xz and X are functions of the
energy. The solution is found by setting the derivative of y? with respect to
energy to zero. It is a good approximation to take the x-ray cross sections
to be proportional to £3. It then suffices to maximize

XB7/3

This leads to the transcendental equation

3
1 — eiXB = —XB (7)
7
whose solution is
Xp = 2.03; 1—e =087 (8)

That is, one should choose the energy so that 87% is absorbed by the medium.

2 Energy Weighting with a given Energy
Spectrum

Suppose there is a fixed x-ray source with a spectrum (number of x rays per
unit photon energy) ¢(E). Imagine that we bin the x-ray energies into M
bins each of width AE. The ¢(E;)AFE plays the role of N in the calculation

above. Now suppose we weight each bin by w; and form the single statistic

W => nw 9)

where n; is the number of x rays observed in a detector (assumed to be
perfectly efficient) in the ith energy bin. The expectation value of n; when
there is no target present is

(n;) = ¢(E;) AEe X (10)

where Xy is evaluated at F;. Analogously, when the target is present the
result is

(n) = G(E)AEe> (1~ Xp) (11)



Thus, writing Xo; = Xp(E;)
(AW) = Z<ni>XTiwi (12)

To judge the significance of this signal we need to know the fluctuations in
W (we can ignore the target here).

(W?y — Zn wZZn]w] Zn w;)) (13)

Using Poisson statistics, (n?) — (n;)? = (n;), so

o = (W?) = (W)? = 3 (n)wy (14)

i
Altogether, our significance is

<AW>2 . (Zi<ni)XTiwi)2

ol >i(ngyw?

S = (15)

Let us define

(Aaw)2 (i) Xowi)?

S —
ol Zj<nj)X%j > i{n;)w? Zj<nj>X72‘j

(16)

We recognize that Y7, a;b; defines a scalar product and that S is simply
cos? f where 6 is the angle between the abstract vectors w; and Xr;. Since S
and S differ only by a factor independent of w;, is suffices to maximize the
latter. To do this we need to choose the vectors to be parallel to each other,
ie.

w; X XTi X O'T(EZ') (17)

Now if the x ray cross-section varies as F 3, the ideal weighting is to take
w; to be proportional to E~? as well.

As an example, consider a spectrum extending between FE,,;, = 15 keV
and F,,.. o< 30 keV:

¢ X (Emam - E)(E o Emm) (18)



cos? 6
wox B 0.784
w=1 0.866
w =1 —10g(E/Emin)/108(Emaz/ Emin) | 0.970
W X o 1.0

Table 1: Values of the figure of merit, cos?f for various weightings. The

“body” is 5 cm of Z = 7.0 material. The target has Z = 20.

Take the “body” material to have an effective Z of 7 and take the target

to be calcium (Z = 20). Use our parameterization

o=2415Z*?E73 +0.567

which gives the cross-section in barns, with £ measured in keV. Consider a

sample 5 cm in depth.
We consider four different weightings:

e wx FE
e w=1
o w=1-— log(E/Emm)/ log(Ema'E/Emln)

® WX O

The third is chosen so the weight drops from one to zero across the spectrum.
We then calculate cos? 6 as described above. The results are given in the

Table.
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Figure 1: The observed x-ray spectrum (solid). The weighting functions
considered: proportional to energy, E (dashed); proportional to o7 (dotted),
proportional to 1 — log(E/15keV)/log2 (dot-dash)



